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ABSTRACT 

The customary defocussed and Foucault modes of Lorentz microscopy- 

are usually described in terms of geometric optics.    Wohlleben has shown 

that geometric optics has a restricted range of validity,  however; a more 

fundamental approach is provided by wave optics.    The defocussed and Foucault 

modes may be discussed in terms of wave optics,   and for the defocussed mode 

it can be shown explicitly that the geometric theory is simply the first approx- 

imation to the wave optics theory.    Consideration of wave optics also leads to 

the proposal of two additional modes of Lorentz microscopy: Zernike phase 

contrast and interference microscopy;     these modes cannot be described on 

the basis of geometric optics.    The most fundamental problems in magnetic 

films which are amenable to study by Lorentz microscopy are investigations 

of the fine structures of domain walls and magnetization ripple.    These prob- 

lems are discussed in terms of wave optics for all four modes of Lorentz 

microscopy; in particular the intensity distribution of the zero-width diver- 

gent domain wall is explicitly calculated for each mode.    For practical ex- 

periments the importance of coherence,  i.e.   of the illumination source size, 

is emphasized,  and the experimental aid of holography is suggested.    Since 

the Wohlleben limit is valid for all four modes,  however,   there is no resolu- 

tion advantage inherent in any one mode.    The choice of modes for solution 

of the domain wall and ripple problems therefore depends upon experimental 

convenience.    It is concluded that the defocussed mode seems most promising 

for practical application; Fresnel diffraction is preferred for the domain wall 

problem,  while Fraunhofer diffraction using low angle electron diffraction 

techniques will be fruitful for the ripple problem. 

Accepted for the Air Force 
Franklin C. Hudson, Chief 
Air Force Laboratory Office 
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I. INTRODUCTION 

Lorentz electron microscopy has been used for several years to in- 

vestigate the magnetic structure of thin ferromagnetic films.    In the past, 

two modes of operation of the electron microscope have been used to obtain 

Lorentz micrographs,  the defocussed and Foucault   modes.    The mechanisms 

of contrast formation of these modes have generally been interpreted on the 
12   3 4,5 

basis of geometric optics. It has been noted, '      however,   that the mag- 

netic structure of a film presents a phase object,  not an amplitude object,  to 

the illuminating electron beam and that the fundamental contrast-formation 

mechanisms should therefore be based on wave   optics,  not geometric optics. 

The wave-optical aspect was overlooked by most workers in the field until 

Wohlleben  '     showed that the geometric-optic approach was only an approx- 

imation to wave optics,  and that this approximation was invalid past a certain 

limit.    Since it is necessary to approach or surpass the geometric optic limit 

in order to examine the details of magnetic structure in ferromagnetic films, 

it is necessary to consider wave optics in order to perform high resolution 

Lorentz microscopy.    Consideration of wave optics not only leads to a more 

basic understanding of the two conventional modes of Lorentz microscopy, 

but permits the contemplation of completely different modes of electron mi- 

croscopy for the examination of magnetic structure. 

In this report the geometric and wave theories will be reviewed for the 

two conventional Lorentz modes, and the transition from one theory to the 

other will be discussed.    Several possible experimental arrangements,  based 

on wave optics, are presented for high resolution Lorentz microscope investi- 

gation of the two central problems: the   fine structure   in both domain walls 

and magnetization ripple. 
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II. GEOMETRIC OPTICS THEORY 

12   3 The geometric theory will now be briefly reviewed   : along with 

Wohlleben1 s   limit of validity of this theory. 

A.    Defocussed Mode 

In this mode,   the objective lens of the microscope is focussed on an 

"image" plane located at a distance    Z  from the sample plane   (Fig.   1). 

The relation between the (uniform) intensity  I     in the sample plane 

to the intensity  I(x)  in the image plane is desired.    It is assumed that the 

illumination is uniform,  parallel,  and vertical,  and that a ray passing through 

any point of the sample suffers a deflection  v   due to the  Lorentz force acting 

on an electron during its passage through the sample. 

For a sample uniformly magnetized in the r\ direction (perpendicular 

to the   £   direction),   the deflection is 

(1) v    = 4TT   M    t(,   6 TT   ) "o o      2m  U 
e 

where   t  is the sample thickness,  m    the electron mass,   M    the saturation 
e o 

magnetization,  and U the relativistic accelerating potential.    In a non- 
e 

uniformly magnetized sample,  at a point with a magnetization component 

M      in the r\ direction 
Tl 

M   (5)v 

(2) Yff)«-^       ' 
o 

Throughout this report the magnetization will be considered to be a function of 
one parameter only,  i.e.   the problem is assumed to be one-dimensional. 
Generalization to two-dimensional magnetization distributions should not be 
difficult. 



By conservation of matter,  from Fig.   1,  I d^ = I(x) dx  or 
o 

^d? =!{[? +d§ - Z(Y +§■<!§)]- [? -Zv]  }       . 

Then J - I(x)/I    is,  using eq.   2, 
o 

(3)        "(x)\   zvoVgr: 
M    V      d§        ' 

o 

The relation between a point  §   and its corresponding point  x  is, 

from Fig.   1, 

x = ? - ZY     ,      or from eq.   2, 

(4) x = I  - 
ZY   M  (§) 

o    11 
M 

o 

Assuming a given magnetic structure,  eqs.   1 through 3 permit the cal- 

culation of the   intensity       *9(x)  as a function of x in the image plane,  while 

the image point x  is related to the sample point  § through eq.  4.    Note that 

at focus,   i.e.    Z = 0,   there is no contrast,   as seen from eq.   3. 

B.   Foucault Mode 

o 
In the Foucault mode,  investigated first by   Marton   ,    the 

objective lens is focussed on the sample,  but an aperture is placed in the 

back focal plane so as to stop some of the rays from reaching the image plane 

conjugate to the sample plane. 



Consider the sample shown in Fig.   2,  i.e.   a magnetic film with a zero- 

width "divergent" domain wall at the optic axis .   Uniform,  parallel,  horizontal 

illumination impinges upon the sample from the left.    The Lorentz force acting 

upon the electrons during their passage through the sample causes deflections 

of + Y   ; hence the rays from the antiparallel domains pass through separate 

points in the back focal plane.    An aperture cutting off half the field in the back 

focal plane then stops the rays from one domain,  but passes the rays from the 

other,   so the first domain appears dark in the image plane while the second 

appears bright.    Thus the intensity is 

const for x   > 0 

(5) 0      for x'< 0 

C.    Validity Limit of Geometric Theory 

Wohlleben    has shown that there is a fundamental limit to the geometric - 

optic approach. 

First consider the case of a nonmagnetic sample,   where Coulomb forces 

act upon the transmitted electrons.   (Specifically a sample consisting of an 

opaque half-plane abutting a perfectly transparent half-plane may be con- 

templated).    The relation between the uncertainty Ap in the momentum of an 

electron due to scattering,   and the uncertainty A§ in the position of the as- 

sociated scattering center in the sample is given by the uncertainty principle: 

Ap    A§ ^ h     . 

When Ap. A§ ~ h,  wave mechanics (wave optics) must be used to find the 

electron intensity, and diffraction effects are expected,  while if Ap   A?»h, 

classical mechanics (geometric optics) is adequate to solve the problem and 

no diffraction will be seen.    In the present case the value    of Ap    is large, 

of the order of the initial momentum p.    Then,   since h/p = \ ,   A? ^ \ .    Thus 

*The positive and negative senses of the image plane axis,  x   ,   are reversed 
from those of the sample and focal plane axes,  § and x,   to call attention to 
the image inversion property of the lens. 
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if the electron wavelength is much smaller than the structure it is desired 

to resolve,   geometric optics can be used.    The electron wavelength for  100 kv 

electrons is 0. 04Ä,  which is why structure in the Angstrom range in Coulomb- 

scattering samples   can be resolved by the electron microscope without diffrac- 

tion effects. 

If this analysis held for magnetic scattering samples,  magnetic   fine 

structure in magnetic films could easily be resolved without diffraction effects, 

since that finestructure   is in the micron range.     The analysis does not hold 

for the magnetic case,  however,  essentially because in this case Ap « p. 

Consider  (Fig.   1) an electron passing vertically through a magnetic sample. 

Then the horizontally-directed momentum caused by the Lorentz force acting 

on the electron during passage is Ap-(§)  = [evAB(^)]  [ t/v]  = etAB(§).     Here 

B(C) = 4TT   M(§) and v is the electron velocity.    Substituting into the uncertainty 

inequality yields: 

e t AB(§)  A§   £ h     . 

Thus in the interval A?,  the magnetic induction cannot be determined within 

an accuracy greater than AB(5) as given by this equation.     The flux change 
j.   AP   AD 

A§ between two ray paths separated by A§  (Fig.   3) is ,   so 

(6) A$ ä ^-      . 
2e 

Thus,   the smallest increment of flux which can be determined classically 

(geometric optics) is   h/2e. 

Consider a NiFe film,   500 A thick,  with M = 800 gauss.     Then for  1° 

ripple with a 1 |-i period,  A$ = 0. 13 h/2e.    Assuming a 2,000A   wide domain 

wall in this film,  at the wall A$  = 4. 89 h/2e.     Thus to obtain high accuracy 

in the determination of the   M distribution,   it is necessary to go beyond 

geometric optics to wave optics. 
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Fig.   3.    Illustrating Bohm-Aharonov phase shift. 

8 



III.       WAVE OPTICS THEORY 

A.    Phase Object 

The key to the wave optical approach is the understanding that magnetic 

structure in a sample presents a phase object to the electron illumination, 
5 

i. e.   it changes the phase but not the amplitude of the impinging electron waves. 

The origin of the phase shift lies in a purely quantum mechanical effect. 
9 

It was shown by Aharonov and Böhm     that the phase difference 0 between two 

points P    and P along an electron ray is given by 

0 = . h 

P 
e 

A •   dl 
P 

o 
where A is the vector potential.     Then if two rays originate in the same point 

P    and end in the same point  P,   but have different paths between P    and P, 
o o 

the phase difference between the waves arriving at   P  is 

A0 = " f Lfp   A •  dl   - Jp A •  dl] = - f ^ 2 •  dl = - f * 
o o 

Path 1 Path 2 

where $ is the total flux enclosed between the two paths. 

Now assume (Fig.   3) the sample is a thin magnetic film,   of thickness   t 

but infinite in extent,  and further assume that there is a variation of the mag- 

netization only in the § direction.    If one path goes through the origin while 

the other path goes through point ?,   then 

<7> A0 = .-si- f B (Ode 
o 



where B    = 4TT  M    and the   r\  direction is perpendicular to the   § direction. 
r\ r\ 

Then if P   O  P is taken as the reference path,  eq.  7 gives the phase shift 
o 

for any arbitrary path P     §   P.    The object (neglecting the uniform scattering 

which would occur for a magnetic or nonmagnetic sample) is thus a phase 

object as stated,  with the phase shift A0(§) given by eq.   7. 

If a phase object is examined in focus by a microscope in the manner 

customary for an amplitude object,  no contrast at the observation plane is 

obtained,  but only uniform illumination.    Several methods have been developed 

in light microscopy to provide contrast,  i.e.   to detect the position-dependent 

phase shift    A0(§).      These methods include the defocussed and Foucault 

modes discussed above,  along with other modes discussed later. 

Whichever mode of microscopy is used to examine a magnetic film,  the 

intensity at the image plane can be related to the magnetization distribution in 

the sample on the basis of wave optics with the aid of eq.  7.    For an assumed 

magnetization distribution in the sample,  the results of wave optical calcula- 

tions for the defocussed and Foucault modes should be much more accurate 

than the predictions of geometric optics; the latter approach can be viewed as 

a first approximation to the wave optics theory.    For the defocussed mode this 

statement can be proved for any arbitrary magnetization distribution. 

10 
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Fig.   4.    Defocussed mode by wave optics. 
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B.    Defocussed Mode,   Transition from Wave to Geometric Optics 

It is desired to find the intensity ratio c9(x) = I(x)/I    in the defocussed 

mode (Fig.  4)  by wave optics.    To do this   the excitations of rays P    5 x are 
o 

combined at x in the Fresnel approximation using the Kirchoff diffraction 
5, 10 

integral   J      (see Appendix A-I) where it is assumed that a ray passing through 

the sample at point  ?   suffers a phase shift given by eq.  7.    Then 

(8) I(x) =  I A J  exp {i[A0(§) + fi(?)] }  d?1 ' 
*_co 

where Q(§) = --=£L + —«—    §     ,  A is a constant,  and A0 is given by 

eq.   7.    To find J(x) note that I    is determined by substituting A0 - 0 in eq.   8. 

To obtain the first approximation to eq.   8,   the method of "stationary phase" 

(Appendix A-II) may be used.    Here,  assuming    S » Z, 

(9) f(5)=  &0<?)       x§    ■    §2 

k Z 2Z 

Substitution of f"(?) from eq.   9 into eq.   A-5 yields,  neglecting the factors 

before the integral 

(io) r d2A0(?) 
L   d?2 

O 

where §    is found from   i   (§   ) = 0 or from eq.   9: 
o o 

I    r  dA0(§)   -i JL   +i_   - o 
(ii) k   L    d?     J     5   "   z       z 

o 

1Z 



Substituting eq.  7 into eq.   10,  and using the fact (from eq.   10) that I 

2rr ZAZ/k, 

(12) «9 ix) .  IM  ..  i 
I             .       4TT  Z te\ , <*M 
° l~—"E ("df» 

where the relation k = 2TT/\  was used. 

Now the wavelength of electrons accelerated to the relativistic potential 

U   is e 

X   =  r- ,      or   from eq.   1 
(2m  e U   )2 

e        e 

(13) .    _      h^o 
4TT   M  te 

o 

Substituting into eq.   12: 

(14) «>(x)=- 
Zv dM 

1   . _° ( li ) 
M l   d§    ' 

o 

while from eqs.   7,   11,   and 13, 

zYoM(?) 
(15) x = ?-- 

M 
o 

But eqs.   14 and 15 are precisely the relations obtained from geometric optics, 

eqs.   3 and 4.      Thus,   the geometric theory is merely the stationary phase 

approximation to the wave optic theory,  while the point x in the image plane 

corresponding to a given point in the  §   plane is that value of x  giving station- 

ary phase for the given  §. 

13 



Consider now the limit of validity of this approximation.    Assume that 

for a given value of x values of ?   in the range §     - —— < 5  <   5    + -rr-     will 5  ö       o        2 o        2 
contribute appreciably to I(x) in eq.   8 in the stationary phase approximation, 

while values of § outside of the range A§ will not contribute.    Thus,   structure 

within the A§ range cannot be resolved. 
  00 

The range of appreciable contribution to the integral Je1 d£ 
Üoo 

A?. is given by | kf (?   +—) - kf (?   )|s —since only within this somewhat arbitrary 

range will constructive interference be expected (Appendix A-II).    Expanding 

f(5    + —r- ),  noting that f (§   ) ■ 0 and substituting from eq.   9,   gives for the 
o c o 

resolution condition 

a-3L (Ag)2   (Yd2A0(?)   -\ _fc   "I 
8        IA    d;2       y§=?

+   Z  J 
o 

Now the second term in the inequality represents the uninteresting case of 

no sample present (A0 =0).    Ignoring it and noting that the first term can 

be related to the minimum detectable AB in A? by eq.   7, 

r d^A0(£)_N 2TT teAB 
(   d?

2   \-i       h 
o 

A?ABt 2> h/e      ,   or 

A$ £ h/2e 

as found in (eq.   6) from the uncertainty principle. 

,  it is seen that 

14 



IV.       WAVE OPTICS APPLIED TO MAGNETIC FILMS 

The realization that a magnetic film is a phase object,   so that possible 

contrast-formation mechanisms should be discussed on the basis of wave optics, 

permits more freedom in devising solutions to the two outstanding problems 

in the magnetic microstructure of films: the details of domain walls and 

magnetization ripple.    Four standard modes of viewing a phase object have 

been developed in light microscopy:   A) Defocussing of the objective lens, 

B) Foucault,    C) Zernike phase-contrast,   D) Interference microscopy.     The 

first two modes are the customary modes of Lorentz microscopy; as discussed 

above they may be described in terms of either   geometric optics or wave op- 

tics,  but the latter approach is more basic and more fruitful (see below).    The 

last two modes may be described only in terms of wave optics.    All four modes 

may be applied to magnetic films. 

Each of these modes may,  in principle,  be completely carried out in the 

electron microscope.    Experimental problems make modes C and D (also B 

to some extent) difficult,  and it may be useful to perform part of the operation in 

the electron microscope and part outside the microscope using Gabor's holo- 
12 

graph technique (Appendix A-III).    This technique      was first developed for 

electron microscopy,    '       but most of the recent work has involved the use 

of light exclusively rather than electrons and light. 
14 

Using Gabor's more practical second method,       a photograph is made 

with the objective lens defocussed from the object; the photograph is known 

as a hologram.   (In this sense all micrographs made with mode A are holo- 

grams).    If the hologram is suitably illuminated with coherent (laser) light, 

"reconstructed" radiation appears to originate from an image of the sample 

at a distance from the hologram equivalent to the defocussing distance. 

(Actually there is also an unwanted conjugate image,  but its influence can be 

cancelled out with suitable methods     ).    As noted by Gabor et al,       all of the 

standard light optical modes A through D may now be comfortably applied to 

15 
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the reconstructed radiation. 

Whether a given mode of microscopy is carried out completely in the 

electron microscope,  or partly with the aid of holography,   the same analysis 

on the basis of wave optics should hold.    For an arbitrary magnetization dis- 

tribution it is   in general not possible to obtain the intensity distribution in 

the image plane in closed form,  however.    On the other hand there is one 

particularly simple magnetization distribution which is amenable to analytic 

treatment for each of the four modes.    This distribution is that of the zero- 

width (no internal structure) "divergent"  180    domain wall,  used to illustrate 

(16,     UM = A exp [ik (Z + S, + ^iffi-] J"R«, exp \*§fi (f^ - 5)2]d? 

For the zero-width wall,   M    = -M    for ^ > 0,  while Ivl    = M    for § < 0.    Then 
T] O T] o 

the Foucault mode (Fig.   2).    Since the consideration of this distribution is 

instructive,   the image plane intensity distribution for each of the four modes 

of microscopy has been calculated. 

In addition to consideration of the zero-width wall,   the practicality of 

each of the four modes for solving the domain wall and magnetization ripple 

problems will be discussed on the basis of wave optics. 

A.        Defocussed Mode 

(a)   Zero-width Wall 
o 

To calculate the intensity distribution for the zero-width 180    divergent 

wall, the Kirchhoff diffraction integral is used (Appendix A-I) in the form of 

eq.  A-3b;  with R(?) * eiA0(?): 

Holography may not be applicable to domain walls,  however,   because of the 
large phase shifts associated with them.    See Section IV.   C-b. 

16 



4TT M  et 
from eq.   7,  A0 = A   |§| ,  where A    =   j;  .    Substituting into eq.   16 yields 

U(x). 

This expression can be evaluated in closed form.    First,   U(x) is written 

as U   (x) + U   (x),  where the subscripts refer to the integration ranges 

0 < § < °° and -00 < § < 0,   respectively.    The transformation § -*   -§ is used 

to evaluate U   .    Upon completing the square in the integrand,  another change 

of variable permits the expression of U    and U    in terms of Fresnel integrals. 

The result is, for x > 0, 

10 

tsUi U(Z+S) J    \ exp i| k(Z+S) +®± {[* +C(2±)] + i[i + S (Z±)]} 

where 

h-(M»y< x         o_\ 
Z"     kj     ' 

and 

n k     r   2       SZ     ^x   ..      o\   1 

„ 

Here    C and S are the Fresnel integrals,  and it is noted       that C(-x) = -C(x) 

and S(-x) = -S(x).    Because of the symmetry about the origin,   U(-x) = U(x). 

The intensity I =  | U    + U   |    .    It is convenient to normalize to the in- 

tensity in the absence of a sample,  which is (from eq.   16 for R(§) = 1) 
Z 

I    = 
2TT ZSA 

o k(Z+S)   * 

17 
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Fig.   5.    Relative intensity vs.   distance from center of image plane 
for zero-width divergent 180° wall viewed by the defocussed mode. 



By geometric optics all rays for § > 0 are deflected by an angle v, 

while all rays for § < 0 are deflected by -v.    Thus at the image plane located 

a distance Z below the sample the relative intensity  I  is zero in the range 

-vZ < x <  vZ,  while 1=1 elsewhere.    From the definition of A    and eq.   13 
o 

note that this geometric optical parameter enters the above wave optic equation, 
Ao since —-— = v. 

Remembering that U    and U    are the contributions for positive and nega- 

tive § respectively,   note that for large vZ there will be little contribution of 

diffracted excitation from the negative § to the positive x regions,   i.e. ,   U 

can be neglected.    Then from the above equation 

2 2 
%)^i| + CP^   +[*+S(£+)]  }    . 

o 

This is precisely the form for diffraction of radiation       from an opaque half 

plane covering the range  -00 < § < vZ,   with the rest of the § plane perfectly 

transparent. 

For  100 kv (X ~ 0. 04A),   S = 20 cm,   Z = 5 cm,   the relative intensity was 
0 

calculated (Fig.   5) for a zero width wall in a 500A thick film with M    = 800 gauss. 

The solid line represents the wave optics prediction while the dotted line is the 

geometric optics result.    The difference in the two results is readily apparent. 

(b)       Domain Wall Problem 

To utilize the defocussed mode for the domain wall and ripple problems, 

the intensity distribution (found either from a microphotometer trace of a 

calibrated photographic plate or directly in the microscope with an electron 
18 

density measurement method     ) must be matched to the theoretical intensity 

from the Kirchhoff diffraction integral (eq.  16X     The matching process then 

yields A0(§) and hence M  (§) (eq.  1 

the matching procedure practical. 

yields A0(§) and hence M  (§) (eq.   7).    Special techniques must be used to make 

19 



1.     Parametric Method 
19 

In calculations of wall energy and shape,   Dietze and Thomas 
20 

assumed a two-parameter Neel wall shape.    Later Feldtkeller       ex- 

tended this to a three-parameter shape which permitted the inclusion 
20 

of the long tail on the wall which was found by Lorentz microscopy 

Using the coordinate system shown in Fig.   6,   Feldtkeller1 s as- 

sumption may be expressed as 

cos [6(?)]  = 
c£)[2 +(-)2]* (i - c) (hlz +(r)2] 

i+(V i + (|)2 
a b 

Here the first term gives the shape of the inner structure of the wall, 

while the second term reproduces the long tail.    The parameters   a and 

b  are the inner and outer wall widths,   respectively,   while   c   is a 

weighting factor. 

From eq.   7 

? 
-4TT etM        • 

(17) A0(5) =  T     |     cos [6(C)]  dC      . J 
o 

Substituting into the above equation and integrating gives 

o 

■ 

-4TT etM ac       r    !       ! £ i 

(18a)      &0(?). —_^_ (A 2*+ j ln[CY^)(^)]} 
2"-  1       a  + 1 

4TT etM b(l  - c )    r   i       i A 
o ry 6*.   IN S 2*+ lNT) 
£ 

2£-  Iy *  65+ 1 

20 
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Fig.   6.    Model of a Neel wall. 

3-24-7261 
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F     2 ^2 
where a = 2 + (-^—)     and 6=2 + (~—)   .    Note that as §  - 0 (wall center), 

a b 

4ir   et M  5 
A0 - 0; and as ?  ~* °°,  A0 -*  n:   as expected. 

The proposed procedure is as follows:   Starting from the measured 

intensity distribution,   values of the parameters a,  b,  and c are first 
0 

assumed (For a 500 A Ni Fe film reasonable values are a = 0. 1 \At 

b =  1.5 M and c = 0. 4 \i).     Then A0  (§) is found from eq.   18a,   and the 

result is substituted into eq.   8 (with known values of k,   Z and S) for a 

computer    calculation of I(x) for an adequate range of points x.    The 

least squares difference from the experimental curve is then found. 

New values of a,  b and c are then assumed and the procedure is re- 

peated.    Hopefully the process will converge to give reliable values 

of a,  b and c,   thus yielding the wall shape. 
21 

Recently Aharoni      has calculated that under certain approxima- 
P 

tions the shape of a Neel  wall can be expressed by cos [Q(§)]   = tanh (X), 
q 

where the parameter   q  now has a physical interpretation.    Then from 

eq.   17 

-4TT et M <p 
* 

(18b) A0(§) = lncosh(^) ,   - i 
This one-parameter expression would be easier to apply than eq.   18a. 

2.    Inversion of the Kirchhoff Integral 

There is a more sophisticated way to attack the problem.    For 

an object function R (§) = e        ? the wave at the image plane is given 

by eq.   16. 
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22 
Winthrop and Worthington       have shown that this equation can be in- 

verted,   i. e.  R(§) can be expressed in terms of U(x).    The solution is 

2 
^dx (19)     R(5) . _I_   exp [.ik(Z  + S)] j u(x) expf-i^ - ^g^(|^- ?)  ] 

_oo 

This can be verified by substituting eq.   19 into eq.   16 and vice versa. 

The primary problem is that U(x) is not measured, but only the 

intensity | U(x)| , so that only the amplitude and not the phase of U(x) 

is known. Finding R (§) from eq. 19 is thus similar to the problem of 

determining the structure factor with x rays, where again only inten- 

sities and not phases are known. 

However,   there are techniques available to obtain the full phase 

and amplitude information if two different micrographs are taken. 

Assume that R(5) = e1     *     *• 1 + iA0(§).    Assume that the diffracted 

radiation is shifted by —- in phase between micrographs.    Such a phase 
/ ? 

shift is equivalent to replacing R(§) by e - R(5) in eq.   16.     Then 

from eq.   A- 1 0 

2 £    °° 
,2,   t      „   ,   t . *,   v      2TTZA    r ,2k   *   p   A.,«rv rTT  ,    k    ,        mk2. (20)     l^(x) =U±(x)U±(x)=      ^ {1  +(^|) A0(^)cos[^±^ (x - ?r]  d§j 

_oo 

where the plus and minus signs refer to phase shifts of 0 and - —,   res- 

pectively.    From this equation and eq.   A-10 it is easily seen that 

There may be trouble applying these techniques to domain walls because of 
the large phase shifts associated with them.    See Section IV. C-b. 
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(21)     U(x) = A<-^)   {expi[| + k(Z + S)] } {l  + -2 [k (-* f—) -  lj 
i/2~ 4ir ZA 

VT ^   4TT ZA2 JJ 

This equation can now be substituted into eq. 19 to find R(5). To check 

the procedure, R(?) as found from eq. 19 can be substituted into eq. 16 

and the result checked against I  (x). 

It would be experimentally difficult to introduce a — phase shift in 

the diffracted radiation.       If holography (Appendix A-III) is used,  how- 

ever,   insertion of a quarter wave plate will cause the required phase 

shift.    This technique has been proposed for use in light microscopy 
23 

by Gabor and Goss. 

In another and perhaps easier technique it is again assumed that 

R(?)~ 1  + iA0(§),  and in addition that S ^> Z.    Again two micrographs 

are taken but without shifting the phase of the illumination.    Instead, 

two different defocussing distances are chosen such that the image 

planes are equidistant above and below the sample plane.     Under these 

conditions the above two equations hold (in the first equation let S "* °°) 

if now the plus and minus signs refer to the cases of defocussing below 

and above the sample,   respectively. 

Still another approach is to use the parametric form of eq.   18a or  18b 

with eqs.   16 and 19.    The function R(§) is first evaluated from R(§) = 
iA0 (?) 

e for values of the parameters a,  b and c which are expected to 

fit the film being investigated experimentally.    Then the function 
ig(x) 

U(x) = T(x) e is found from eq.   16»   with the values of Z and S used 
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experimentally.    From the experimental intensity trace and the cal- 
—      I   (   ) 

culated g(x),   the function U   (x) - [l(x)]      e °       is formed and substituted 

into eq.   19 to find R   (§).    From R   (5) new values of the parameters a, 

b and c are found,  an improved function g' (x) is constructed from eq. 16 

using these new values,  and the new function U" (x) = Ll(x)]     e is 

used in eq.   19 to give R   (§).    The process is repeated until the values 

of the parameters a, b, c or q converge.    This procedure should be more 

practical than the one discussed in the above section "Parametric Method". 

(c)   Magnetization Ripple Problem 

If at any point in the film,   M is at a local angle 6 with respect to the 5 

axis,   then 

(22) M= [M    cos6]S+[M    sin6]  TI     . 
o o 

For one-dimensional magnetization ripple it may be assumed that 

oo 

(23) 8(§) = J    6    e'm dB 

where ß   is the wave number of the ripple component,   i.e.   ß  = —   where 

p is the ripple wavelength.    Here   ß = —   ,  where  n  is any positive or nega- 

tive integer and Q is the width of the film.    Further,   9    is complex,  and 
* ß 

Öp = B       in order to keep Q real.    It is the task of Lorentz microscopy to 
i 2 

find the ripple spectrum,   i.e.   |öQ|     as a function of ß,   so that a direct com- 
24 ß 

parison with theory       can be made. 

Substituting eq.   23 into eq.   22 gives,   for small ripple  (small 9(§)), with 

the aid of eq.   7: 

(24) A0(§) =  -£ 
I4TT M et        -"60 . D. 

-^(l-e-lP?)dP 
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1. Fresnel Diffraction 

Eq.   24 is substituted into eq. 16 to find I(x).    A computer procedure, 

similar to that suggested above for domain walls could be devised where 

trial functions of the form of eq. 24   would be used in eq. 16.   Fortunately, 
7 

however,  in contrast with the domain wall case,  I(x) can be found    an- 

alytically (Appendix A-IV) to an approximation beyond that of geometric 

optics (eq.  A-14).    To evaluate 0    from the experimental intensity distri- 
P 

butionc9(x),   the latter is Fourier analyzed (Appendix A-IV). 

2. Fraunhofer Diffraction 
2 

If Z is made large enough,   the term involving §    in eq.   8 may be 

ignored,   giving Fraunhofer diffraction.    (Appendix A-I). 

Examination of the Fraunhofer diffraction pattern of ripple,   rather than 

the Fresnel diffraction pattern discussed above,  is useful because it 

gives  | 9   | " as a function of ß directly,   without the necessity for Fourier 
P 

analysis of experimental results. 

To calculate the Fraunhofer diffraction pattern,  it is again assumed 

:r th that 9 is small so that e        may be approximated as  1  + iA0.    Under this 

assumption,   eq.   24 is substituted into eq.   8 where now   ^(?) = - 

This yields,  with the aid of the integral representation of the 6 function, 

4ir M  et     °°e                    4ir M  et      °° 9 
(25)      U(X) = A{ö(X)[I  -  ^-     '  -f  dß]+ ^— J   -^6(ß+«|)dß}    . 

_co 
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The first term is a 6 function at the origin from the   undiffracted beam. 

The second term gives the intensity 

(26) I(x) = C 
4TT M et , 2 

o 
• e 

kx where ß = ±——and C is a constant. 

In other words,   the distance  x in the image plane is directly propor- 

tional to the wave number ß,  while the intensity is proportional to 

I   9ß    I2 2 |  —T— I     ; a scan of I(x) vs x thus leads directly to   | 9   |     vs ß,  which 
P p 

may be immediately compared with theory. 

Note that if x/Z is expressed as the deflection angle |i,  and if 

ß =   while k = —-—   ,  from eq.   26: X.   = Pl-U    This is precisely the 
P A. 

Bragg condition for electron diffraction from periodic structure of 

spacing p   examined with illumination of wavelength X. .    That is,   this 

mode of operation of the microscope is equivalent to finding the electron 

diffraction pattern of the sample.    This may be accomplished in prin- 

ciple by examination of the back focal plane of the objective lens when 

it is focussed on the sample (Appendix A- V).     However,   the angles p. 
-i 

involved here are very small (for p = 1 micron,  X,   = 0. 04 A,  |i = 4 X  10     ), 
25 

so that the techniques of  low angle electron diffraction      must be used. 

The angular divergence a of the undiffracted beam (assumed to 

be zero in eq.  25) will limit the longest ripple wavelength p which can 

be resolved (Section V).    Thus a should be below about 5X10      radians 

(smaller than the value usually attained for low angle diffraction) since 

with this value of a,  a ripple wavelength p   = — = 8M-   should be just 

resolvable.    Alternatively if a source of this divergence is used in the 

Fresnel diffraction method just discussed a coherence length (Section V) 

of —= 8p.  would be attained.    Thus the same resolution should be at- 
a 
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It may be noted that the intensity distribution from such a square wave mag- 
netization-distribution is not applicable to the present problem which involves 
sinusoidal magnetization distributions.    For the present problem,  under the 
approximation of small A0 and in the language of ref.  28,   the Lorentz peaks 
fall on the first order interference spots. 

tainable with either method,  which is not surprising since the same 

information is contained in the diffraction pattern at the back focal 

plane as in the image plane. 

Some experiments along these lines have already been carried 
26 

out     ,  but the results were not interpreted in terms of ripple.    More 

recently,  electron diffraction from periodic arrays of antiparallel domains 
27   2 8 

in cobalt foils     '       has been observed. * 

B.        Foucault Mode 

(a)   Zero-width Wall 

It is instructive to find,  by wave optics,   the intensity distribution in the 

image plane of a lens with an aperture covering half the back focal plane 
o 7 

(Fig.  2),  for a sample having a single  180    domain wall.       Then from eq.   7 

and Fig.  2 

4TT M    et 
<27> A0(§)=A   |5|      ,      where A    ^  -^      • 

O On 

Now by the Abbe theory,  the excitation in the image plane is given by a 

double Fourier transform from the object to the back focal plane then to the 

image plane.   (Appendix A-V).    Using e1     (eq.   27) as the object function R(?) 

and using a "filter" function G(x) 

G(x) - 1,      x>   0 

= 0,      x < 0 
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(which corresponds to the aperture placed as in Fig.   2),   the excitation in the 

image plane is (eq.  A-18): 

W(x') = C | lexp [iA   |?| 
_oo       o 

.f(?-^)x]Jdxd?     , 

where C is a constant. 

This integral may be evaluated explicitly if the upper limit of the  x 

integration is taken after the § integration is completed.    The result is,  for 

x' > 0: 

(28) 

Here 
29 

w,   ,.        ifC     i A  fx'/D 
W(x   ) = ——   e      o 

/A  fx' A   fx' 
o ,  3TT 

~D~    "XTJ 

UC     -IAJK'/D 

k [Ci 
A   fx 

o 
D 

+ i Si 
A   fx 

o 
D 

ITT 

■J ■ 

Ci(v) =  - 

oo Y 

costdt ,     „.,   . _   p    sintdt 
        and     Si(v) = 

For x' < 0 the above equation holds if Ci (-v) is replaced by Ci(| v| ) + rrr ,  and 

if Si (-v) is replaced by -Si(| v| ). 

Eq.   2 8 gives the wave function in the image plane.       The rapidly oscillating 

Ci and Si functions originate in diffraction effects; the rapid variations are damped 

in moving away from the image of the wall (at x    =0).    Thus,  from eq.   28: 

i-       ur/   *\       2TTIC      iA   fx'/D     , lim  W(x   ) = —■  e      o 
x 

lim   W(x') = 0     . 
x'- -°° 

For curves of I(x) versus x see ref.   7. 
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By taking the absolute values,  it is seen that the intensity is the same as that 

found by the geometric theory (eq.   5). 

Most of the rapid variation of the Ci and Si functions are over for values 
29 

of their arguments greater than      TT .    The transition from wave optics to 

geometric optics can then be said to occur for  (eq.   27) 

etBfx       > _7T_ 
fiD 

7 
This inequality may be generalized    by noting that at the domain wall the 

transition in magnetic induction is AB = 2B,  while the diffraction-caused 

transition region in the image plane is Ax    = 2x     wide.    Then noting that 
fx' 

by simple lens theory — = ?, 

tABAg _h_ 
2       "       2e 

or A$ ^ -—  as found (eq.    6)  from the uncertainty principle. 
2e 

(b)   Domain Wall and Ripple Problems 

It is difficult to see how this mode can be used to give quantitative 

magnetization distribution results since the intensity I(x) in the image plane 

is not proportional to the phase change A0(§).    The method may still be useful 
7 

for qualitative studies however.     Wohlleben    has pointed out that I(x) is very 

sensitive to small changes in the position of the aperture in the back focal 

plane of the objective lens.    The difficulty of positioning the aperture should 

be obviated if the Foucault    mode is carried out with the aid of holography, 

however (Appendix A-III),  because of the magnification of scale associated 

with the electron to light transition. 
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C.    Zernike Phase Contrast 

In this mode (Appendix A-VI) the objective lens is focussed on the 

sample,  while a phase plate made to give a — phase shift in the focal point 

region is inserted into the back focal plane.    The intensity in the image plane 

I(x) is then proportional to the phase A0(§).    From eqs 7 and A-22 

x' /m 
I(x')-C[l  --2^L MK)dCJ     , 

Jo ^1 

where 5  = x'/m.    Thus to find M  (£) it is necessary only to differentiate the 

trace of I(x') vs x' at the image plane. 

Although Zernike phase contrast microscopy has been performed in the 
30 

electron microscope      ,   the technique is very difficult.     The use of holography 

in conjunction with the microscope should make this mode more practical. 

(a) Zero-width Wall 

The calculation is again based on the Abbe theory (Appendix A- V), 

where again R (§) = e     °        .    The presence of a centrally-placed quarter 

v/ave plate of radius  a  at the back focal plane now gives the filter function 

(29) G(x) = i     ,      -a * x £  a 

= 1     ,     x <   -a,     x > a 

It is therefore convenient to divide the Abbe integral (eq.  A-l$ into two parts, 

W    and W   ,   where 

00    a 
^x'M C J R(?)lexp C-Ä(g  _ Ä)x]J dxd? W 

_oo    _a 
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and 

W (x') = C lim  (     J  R(5) lexp [ - y- (5 - ■§) x] ]  dx d§ 
L-K»    ICO   "a 

3. y 

+ Clim R(?)lexp[-^(? - %)xj] dxd§     . 

Here C is a constant. 

The x integrations may be performed directly.    The terms in W    involving L. 

and a are then separately collected,  from which it can be seen that 

(30> W    - -W    + lim   W        . 
Z l     a-^> 

It is thus necessary only to evaluate W    by completing the 5   integration. 

This is easily carried out with an appropriate change of variables. 

The result,  for x'  >   0,   is W    = W    + W " ,  where 

±iA   fx'/D 

(31) W    (x')=^    U ± Si (A   )± Si(A   ) + i[Ci(A   ) - Ci(A   )]} 
IK. — T T — 

where 

A   = J^L. (-2- ± -2. )     . 
±        D     V f k    ' 

Note that a/f is the angle subtended at the lens by the edge of the quarter 

wave plate,  while A   /k = v (see Section IV. A-a) is the geometric Lorentz 

deflection angle.    To obtain the above equation it was necessary to assume 

that a/f ^ A   /k,   i.e.   that all the radiation calculated by geometric optics 

passes well within the area covered by the quarter wave plate.    On the wave 

optic theory,   however,  all of the radiation does not  pass through the quarter 

wave plate. 

32 



Sqs.   29 and 30 yield 

(32) W = iW    - W    +   lim W   , 
a-*00 

which together   with eq.   31 predicts the intensity distribution in the image 

plane for x   >   0.    Similar calculations for x     < 0 lead to the same equations, 

but with the signs reversed in the exponent of eq.   31.    Note that if eq.   29 

were replaced by the condition G(x) = 1 for all x,   then W    = W    + W    = lim W   , 
^     »CO 

From eqs.   30 and 31 then 

iA  fx'/D -iA  fx'/D 
W(x') = -~=e     ° for x' > 0,      and     W(x') = —-e forx'<0     . 

The intensity |W(x')|     would thus be constant in the image plane,  and the 

domain wall would not be visible,  as expected directly from the Abbe theory 

(Appendix A-V). 

The presence of the quarter wave plate,  however,   does not guarantee 

that phase differences in the sample will be translated directly into intensity 

differences at the image plane.    For this condition to hold it is necessary 
iA0 

(Appendix A-VI) that A0(s) be small enough so that e        ~ 1  + iA0.    In the 

present case this means that A    ~* 0.    However,   in order to insure that the 
o 

diffracted radiation bypasses the quarter wave plate it is also necessary 

that a "*  0,  but keeping the condition that a/f >> A   /k. 

Under these conditions,   to first order in x   ,   W,   = —;—    ,   while 
?   £C Ik 

lim   W.  = -^-    (1 + i A   fx'/D) for x' > 0.    Then from eq.   32 
_™      * k ° a "*°° 

W(x') = ^^  i(l  + A  fx'/D) 
k o 

Since I = |W|2, 
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A   fx' 
(33"a> I(x')«  1  + 2      ° for x' > 0     , 

while similar considerations show that 

A   fx' 
(33"b) I (x')«   1  - 2 -~   for x' < 0     . 

Eqs.   33 are in direct agreement with the general predictions of the Zernike 

theory (Appendix A-VI,   eq.   A-22). / 

Note that the assumption that A0  «   1 is equivalent to  ——    << 1.    It 

was shown in Section IV. B-a that the geometric    optics approximation was 
Aofx TT 

valid for the Foucault mode when —=r—   > — .    The Zernike case is thus well 

within the quantum mechanical domain,   which is reasonable since this method 

is based entirely upon wave optics. 

(b)   Domain Wall and Ripple Problems 

The validity condition for the Zernike method applied to a zero-width 

wall may also be written as A   § « 1.    For a 500A film with M    = 800 gauss, 
o o 

S < 100 A.    The Zernike technique (and the holography method,   which also 

assumes A0 «  1) thus seems impractical for domain walls,  although it may 

be applicable to the ripple problem.    In that case it would be possible in prin- 

ciple to correlate the ripple structure directly with the crystal   structure of 

the film. 
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D.    Interference Microscopy 

In interference microscopy  the objective lens forms an image of the 

sample,  while an arrangement is made to bring a reference beam from the 

illumination source to the image plane by a path avoiding the sample.    The 

interference at the image plane between the reference and transmitted beams 

creates interference fringes.     (Note that this mode differs from those pre- 

viously discussed; previously interference between rays which all passed 

through the sample was of importance). 
—♦ 

Consider a sample with an arbitrary magnetization distribution M(?,r| ) 

in the §,  r\ plane,  illuminated at vertical incidence with a plane wave.    The 

phase difference between rays passing through points   O and P (Fig. 7) can 

then be found from eq.  7,  where it is assumed that the rays through 

O and P intersect at infinity: 

P 

(34) A0  = -i^-L J     M   (C)dC      • 

Here the integration is taken along the line OP,  and M  (§) is the magnetiza- 

tion component perpendicular to OP. 

The reference beam will interfere with the transmitted beam; the re- 

sultant intensity at any point in the image plane conjugate to P will depend 

upon A0.    If the reference beam is arbitrarily taken to be in phase with the 

transmitted ray through point O,   then intensity extrema (fringes) will be 

seen when A0 = mr ,  where  n  is an integer.    The fringe spacing is given by 

eq.   34 when n = 1,  which reduces to 

(35) A$  =i 
2e 
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where A0 is the flux change between fringes.    The smallest flux change de- 

tectable by simply counting fringes is then given by eq. 35     if more 

accurate knowledge of M    between fringes is desired,  however,  it can be 
i 

gained by measuring the intensity between fringes.    Merely counting the 

fringes is then,  in the Wohlleben limit sense,  equivalent to passing to the 

geometric limit in this mode. 

The fringe contours may be calculated using the coordinate system 

as shown in Fig.   7.    Then,  from eq.   34 

I 
(36) nir  = _JL±1 \    {[cos uu]  M  (C) - [sinuu ]  M  (C)} d£ 

O 

where I = (?     + T)   )   ,  cos uu = — and sin U) = —— . 

The transmitted wave directly behind a uniformly magnetized film is 
4TT MQet 

given by exp (iA   s), where A   = 7 •    This is equivalent to a wave with its 

wavefront inclined to the horizontal at a small angle e,  exp ( ?  ),  under 
\ A X 

the condition that e  = — .    Maximum intensity fringes would thus appear 

in the interference microscope when —is an integer,   so the fringe spacing 
\ A§ is given by —or 

(37) A§=X      • 
o 

For a 500A thick film with M    =  800 gauss,  with \   = 0. 04 A,  A§  = 820 A,   while o 
e = 0. 17 minutes. 
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Fig.   7.    Coordinate system in sample plane for interference 
microscopy. 
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The experimental difficulty is that contrary to the case in light 
10 

microscopy     ,   there is no system whereby a reference electron beam can 

be superimposed on the transmitted beam while keeping the two wavefronts 

parallel (in the   absence   of a sample).    It is true that electron microscopes 
31 

have been modified for use as interference microscopes       but the beam 

superposition is produced by constructing the electron optical analogue of the 

Fresnel biprism.    The transmitted and reference wavefronts are mutually 

inclined,   resulting in a fringe system even with no sample present.    This is 

unsatisfactory for the present application. 

A solution to this dilemma is found in the use of holography (Appen- 

dix A-III).    Here the interference is carried out between the reconstructed 

light wave passing through the hologram and a reference beam taken from 
32 

the light source laser.    For this purpose   '  the hologram is placed in one 
33 arm of an interferometer     ,  e.g.  a Mach-Zehnder interferometer,  and a 

lens is used so that the real image from the hologram falls on a photographic 

plate together with the reference beam.     The wavefronts of the beams in the 

two arms are adjusted to be parallel (without the hologram) at the photo- 

graphic plate. 

Equation 37 may be rewritten for. this case if 5   is replaced by    — 
m 

(Appendix A-III).    Following the above equations,   the fringe spacing is then 

(38) Aw = mA? = -~- 
o 

/ L 
while the inclination angle of the wavefront is now e     = ——    . 

For 4, 000 A light   and m = 1, 000,  for the film discussed above     Aw     = 82 |i 

while       e      =17 minutes.    Measurement of fringe spacing of this magnitude 

and adjustment of parallel wavefronts to well within this angle should be 

practical with proper instrumentation. 
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tt is possible that a different technique involving holography can be 
,34 used     .    Here the sample containing a domain wall is inserted into one of the 

two beams split by the electron Fresnel  biprism in an electron interferometer. 

A picture is taken.     Then the sample is removed (preferably the domain wall 

is swept out by a magnetic field),  and another exposure is made on the same 

plate.    If the developed plate is then treated as a hologram,  the reconstructed 

wave front will show interference fringes from the superposition of the trans- 

mitted beam with and without the  sample.    In each exposure it is necessary 

to have the two beams from the Fresnel  biprism so that one acts as the in- 
15 

clined reference beam following the customary technique of light holography     ). 

The advantage of this method is that careful adjustments of the Mach-Zehnder 

interferometer are avoided; the disadvantage is that an electron interferometer 

must be available. 

(a) Zero-width Wall 

The calculation of the zero-width wall intensity distribution in the image 

plane is trivial for this mode.    It is assumed that the reference beam is of the 

form (I   )    e       ,   while the transmitted beam is of the form (I )    e °'    '   . 
r t 

Then the net intensity is given by 

31 

I = 
i .    i(kZ + A   |5|) 

.    .^   lkZ      .    .2 o (I  )   e + (I )   e 
r t 

or 

X 

1 = 1    +1   + 2 (I I f cos (A   |?|)     . 
r        t r t o1    ' 

Maximum intensity fringes will thus appear parallel to the wall,   separated 

by the distance 2TT /A   . 
o 
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(b)   Domain Wall and Ripple Problems 

The advantage of interference microscopy lies in its ability to translate 

phase changes in the sample into changes in fringe contours at the image plane, 

so that intensity measurements do not have to be made.    However,   since the 

minimum fringe spacing is at the Wohlleben limit,   to investigate the fine 

structure of a domain wall it would be necessary to make intensity measure- 

ments for this mode.    Thus there does not seem to be any advantage in em- 

ploying interference microscopy for the domain wall problem. 

The ripple case is even more unfavorable.    For  1     ripple,  from eq.   37 

the fringe spacing would be about 15\A.    Since the lateral coherence length is 

only a few microns (see Section V),   there is no hope of investigating ripple 

with this method. 
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V.    COHERENCE AND SOURCE SIZE 

Up to this point it has been assumed that the electron illumination is 

perfectly coherent,  although it is well known that this is far from the case in 

practical electron microscopy.    Since the modes of Eorentz microscopy dis- 

cussed in Section IV (and the method of holography,  Appendix A-III) are based 

upon diffraction phenomena,   the attainable resolution will depend on the de- 
35 

gree of   coherence of the illumination     .    To attack the domain wall and 

ripp>le problems it is essential that the highest possible degree of coherence 

be used. 

For an electron beam propagating in the Z direction,  assume a 

Gaussian spread of momentum p.    Then by the uncertainty principle ApAZ ~ h, 

where AZ is the coherence length (i.e.   the spatial extent of the wave packet). 

Then since p = fik  = —  and since the energy E = p   /2m,   the coherence length 
2\ AZ =    ■ . where U    is the accelerating potential.    This is the maximum 
e       e 

path difference between two beams,  originating from a common source emitting 

radiation of wavelength X  with energy spread AE,  for which amplitude inter- 

ference effects can be sustained.    For a 100 kv accelerating potential, 

X. ~  0. 04Ä; since AU    is usually about 1 volt,  AZ °-  8, 000 A.    This is much 

larger than any possible vertical difference in path lengths discussed above, 

so the vertical coherence length is not a subject of concern. 

The horizontal coherence length is a more serious problem.    Assume 

that the source has a width h and is at a distance S above the image plane, 

so that it subtends an angle a - h/S at the image plane,   (Fig.   8).    Then for 

small a the uncertainty in P    caused by the deviations of the trajectories 

from the vertical is AP    = aP.    Since AP A§ ~ h, 

(39) ^ =—        . 
a 
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Rays from points in the sample separated by more than A§ will not interfere 

coherently.    For \ =* 0. 04Ä and for a =~ 10"   ,  A§   = 4, 000A.    In order to main- 

tain a transverse coherence length greater than the domain wall and ripple 

structure it is advisable to make a ~   10 

Thus in any of the four modes of Lorentz microscopy, magnetic structure 

on a scale larger than A§  will not be imaged according to the previous dis- 

cussions; the image will be either greatly distorted or fully lost.    This dif- 

ficulty is most easily seen in the Fraunhofer diffraction mode (low angle electron 

diffraction, Section IV.A-c2),  with a  source of angular divergence a.    Rays 

from long wavelength components p diffracted at angles \1   - — such that |i < a 
\ 

will be hidden in the undiffracted beam.    Thus only components with p < — 
a 

will be resolved. 

In the defocussed mode,  by geometric optics,  rays from a broad source 

which converge through a point in the sample plane will illuminate a circle of 

diameter aZ in the image plane (Fig.   8).    Structure in a region smaller than 

cxZ in size should thus not be resolvable because of overlap from surrounding 

regions. 

The same result may be obtained by wave optics.    Consider first the 

intensity distribution in the image plane from one point of the source at a 

distance V from P    (Fig.   8).    For large S and small v the illumination from 

this point consists of parallel rays subtending an angle v/S with the optic 

axis,   so that the phase at any point  §   with respect to 0 is given by ——— 

The factor exp ( —r  ) should thus be inserted under the .integral sign of 

eq.   16,   the integral evaluated and I = UU    found.      Then intensity should then 

be integrated with respect to v over the range - h/2 < v  < h/2,  and the result 

divided by h.    If this procedure is followed for the ripple case (Appendix A-IV), 

ßaZ 

On 

the additional factor      / sin —-   \     appears under the integral sign of eq.   A-14. 
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The contrast thus vanishes unless —-— < IT ,  or (ß = —) unless p > aZ, 
2 p 

in agreement with the result from geometric optics. 

A.        Practical Considerations 

Now the intensity of illumination j  at a point in the object plane is 
2 

given by j = b vr a     for a circularly symmetric source,   where   b   is the 

source brightness.    It is thus seen that the image intensity decreases inversely 
2 

as (A§)   ,  as a is decreased to increase A?.    A practical point is then reached 

beyond which a cannot be reduced.    Use of three techniques may ameliorate 

this problem:    1) Pointed filaments have much greater brightness b than 

ordinary hairpin filaments,  and special techniques   are available       to obtain 

small source sizes.    2)   Many of the problems involved in Lorentz microscopy 

are essentially one-dimensional.    It may thus be possible to use a slit source 
2 

so that   j   would be proportional to a,  not a   .    3)   Use of modern image intensi- 

fies may make patterns visible at very low illumination levels.    It must be 

noted,  however,   that even when a is vanishingly small there will still be an 

effective a because of inelastic scattering in the sample. 

Precautions must also be taken to ensure that the focal length of the 

lenses do not change because of accelerating potential or lens current fluctua- 

tions,  and that rapidly-varying stray fields^? or mechanical vibrations do not 

blur   the patterns formed on the photographic plate during the necessarily long 

exposure time. 
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VI. CONCLUSIONS 

It has been demonstrated that the basic wave optical approach is very- 

fruitful for a fuller understanding of the defocussed and Foucault modes,  and 

that it leads to consideration of the Zernike phase contrast and interference 

microscopy modes.    It has been shown  that it is necessary to take account of 

diffraction effects in each mode,  i.e. ,  the Wohlleben limit is valid for all 

four modes so that there is no resolution advantage inherent in any one mode. 

The choice of mode for investigation of the domain wall and ripple problems 

will therefore depend primarily on experimental convenience.    At this point 

it would appear that the defocussed mode will be most useful for both problems; 

Fresnel diffraction is preferred for the domain wall problem,  while Fraunhofer 

diffraction will be a powerful technique for the ripple problem.    In any case all 

of these techniques face the same fundamental coherence limitation to the 

resolution; this central problem of the illumination source must be solved be- 

fore quantitative results can be obtained.    The experimental complications in 

many of these modes can be reduced with the aid of the holographic technique. 
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Fig. A-l.    Illustrating Kirchhoff diffraction integral. 
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APPENDICES 

A-I. KIRCHHOFF DIFFRACTION INTEGRAL 

The Kirchhoff diffraction integral gives the amplitude of the radiation, 

U,     at any image point P(x,Z) when a phase object is interposed between the 

illumination source P  (O,   -S) and P  (Fig.  A-l).    The phase object shifts the 

phase of any ray passing through point Q(§, 0 ) of the object by 0(§).    The 

problem has been particularized to two dimensions in Fig.  A-l.    Here the 

origin is   taken at point O in the object,  while the x and Z directions are 

assumed to be horizontal and vertical,   respectively. 

Assuming the distances   r  and  s  are large compared with the extent 
10 

of the object, the Kirchhoff diffraction integral       gives the amplitude at P: 

TT i  r       i0<?>    ik(r+s)  ,. (A-l) U = const J      e e dS 

where k=2,Tr/X.  and \  is the wavelength of the illuminating radiation.    Thus 

in eq.  A-l   to find U    the excitations at P from all  rays  P QP are added,  for 
o 

all points Q in the range -00 < § < °°.    In this addition attention is paid to the 

phase differences of each excitation,  whether such differences be caused by 

different path lengths   r   +  s  or different phase shifts  0   on passage through 

different points Q  of the object. 

if 

Consider the reference path POP with the object phase shift 0   .    Then 
o * o 

A0(5)=  0(?)   -  0 
o 

eq.  A-l can be rewritten 
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(A-2) U = Ae ik(r'+s')  f       iA0(?)    ik[fr-r') + (s-s')] 
e e d% 

_oo 

where,   realizing that eventually only |U   |     is of interest,   e    ° is absorbed 

into the constant A. 

By geometry 2 2 
2        -2   . c2 s (x-?)    + Z 

r      = S     + S 

(r')2 = S2 (sO2 - x2 + Z2 

Expressing,  by the above equations,  r in terms of r'and  s   in terms 

of  s    and expanding, 

r  - r' = §2/2r/  + ... 

/ x?        ?2 

S  ' S    = "T   + 2? + ' * ' 

Note that 

and 

r    = S 

4 2 
8'=  (Z2+x2)t = Z  +^   +... 

Keeping only the initial terms of the above four equations yields upon 

substitution into eq.   A-2: 

(A-3a) U(x) = Aeik[(Z+S)+x2/2Z]   f  R(?)eifi(?)d? 
_00 
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where 

n/-. kx?   , k(Z + S) ?2 
i2(b) =  - —=- +  T^S  ' 1S a constant> 

and 

R(?) = eiA0'?)     . 

Alternatively this equation may be written as 

2 

(A-3b> ik[(Z+S) +2(^+s)  3        <° k(z+s>     s , 
U(x) = Ae 2<Z+S> J   R(?)exp[iJlg>(^-?)2]d?   . 

Often the approximation S >> Z can be made in eqs.  A-3a and A-3b). 

If the extent of the sample is small compared with Z>   then the §    term 

may be neglected in eq.  A-3   .    This case is called Franhofer diffraction.    If 

both terms in  §  must be considered the result is known as Fresnel diffraction. 
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du 

A-II.   METHOD OF STATIONARY PHASE 

The following is a heuristic presentation of the method; for more 

details see Jeffries and Jeffries. 

Consider the integral 

(A-4) J = j"eikf(u) 

Expand   f(u): 

f(u) = f(u   ) + uf '(u   ) + 4" f*(u   ) + . . .      • o o L o 

It is seen that,  upon substituting this equation into eq.   A-4,   the plane waves 

e will destructively interfere      in general,   so that all contributions 

to J  will vanish.    At the value u    where f   (u   ) = 0,   however,   it is possible 
o o 

to have nonzero contributions to J.    Then keeping only the first three terms 

of the series: 

Tag    ikf(u   ) p°° ikf"(u  )u2/2    , 
Je o        e o du 

_oo 

2       kf"(uo)u2 

Let   —-—   r    =     ,  and express the integrand in terms of sin and cos. 
10 

The integral is then expressed in terms of known Fresnel integrals     ,  and 

(A-5) j ^ r     ZTr 1* ei7r/4 Pikf(uo) 
J      [   kf"(u   )  J    G 

where u    is found from 
o 

(A-6) f'(u   ) = 0     . 
o 
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A-III.   HOLOGRAPHY 

12, 15 
Holography can be considered as a process in which radiation 

from an object is "frozen" at a plane in space in such a way that the radiation 

can be later "unfrozen" and allowed to continue on to the observer.    The 

freezing process is merely exposure of a photographic plate,  called a hologram, 

at the plane in question; unfreezing is accomplished by re-illumination of the 

hologram..    In order for this method to work the original radiation and that used 

for reconstruction must be coherent,   although their wavelengths may differ. 

Further,   strong uniform background radiation must accompany the radiation 

from the object during the exposure of the hologram. 
14 In electron microscopy    ,   the hologram is formed by taking a micro- 

graph with the objective lens focussed on an image plane at a distance Z from 

the sample (Fig.   1).    Reconstruction is carried out with coherent (laser) light. 

To discuss holography quantitatively,   the exposure process of photo- 

graphic plates must first be considered.    If a photographic plate is illuminated 

with radiation of amplitude U for a time T then the density D of that plate is 

(in its "linear" region): 

D =T In (|U|2 T) 

where T is a constant.    Here D =  ln(t     ) where   t  is the amplitude transmission 
-p 

of the plate to light after exposure.    Substituting,  t    = (K   |u|) n is the trans- 
n n 

mission of the negative.    In the printing of the positive from the negative the 

exposure is proportional to    t   ,   so 
n 

(A-7) t    =TK  (K   |u|-rn]"rP = K|u|r 

p      L    P     n J 

where T = T T    is the net gamma, 
n p ö 
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The excitation at the image plane for a phase object is given by eq.  A-3a. 

In order to ensure a strong background wave the perturbation on the illumination 
iA0 

by the sample is kept small (e.g.  a very thin sample is used) so that e       may 

be approximated as  1  + iA0,   giving 

2 
ik(Z +S +x   /2Z)     »   .n/fM » .n/.. 

(A-8) U(x) = Ae [ J elQ(§)d? + i J   A0(5) elQ(§)d?]     . 
»00 _00 

The first integral may be found by first completing the square in 0(?), 
10 

then by evaluation in terms of Fresnel integrals. The result is 

r°°   10(5),.      r   2TTZS  -f    iir/4 r        ikSx2     -1 
(A"9) J    e d5=Lk(zlS)"J    e eXPL"  2Z (Z+S)J     " 

_oo 

Assuming S » Z in eq.  A-9,   eq.  A- 8   may be rewritten 

■__f. 
(A-10)U(x) = A(^)*eiW4eik(Z+S,{l +i(27z)*e-iW4el2ZJ A0(?)e

in(?' x)d?j . 
— 00 

The term outside the braces in eq.  A-10 is simply proportional to the direct 

wave from the source    to the image plane of Fig.  A-l; this amplitude is 

modified by the weak wave,   originating in the phase object,  expressed by 

the second term in the braces. 

The electron microscope permits the image given by eq.  A-10,  mag- 

nified m times by the lens system,   to expose a photographic plate and thus 

to create a hologram.    The amplitude transmission t(w) of the hologram is 

then obtained by finding | U(—)|   = [U(—) U   (—) ] from eq.  A-10  /where •2-)|  B[üfÄ)U*(-= m m m 
w = mx is the coordinate measured on the hologram),   substituting into eq.  A-7 

and expanding to first order. 

In the reconstruction process the hologram is illuminated by a wave 
ikI_SL + ZL) 

Re ,  of wave number k     = Zir /\    , 
K -Li JL» 

ikliSL + ZL) 

U     = R e ,   of wave number k     = 2TT/\    ,  originating from a point 
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S     +ZT   from the hologram.    The excitation just behind the hologram is then, 
-Li J-J 

letting C be a constant, 

ikL(SL+ V r 
(A-ll) Us(w) = URt(w) = Ce { 1 + 

. kw 

£-(_*_)* e-^/4 e 
l2m2Z  f A0(§) e

in(^w/m> dg 
2    X2IT Z 

2 

-00 

. kw 

.jLt-k-jie^^e'^Zf    A0(?)e-iQ(?,Wm,d§l     . 
2     2TT Z J J 

-00 

Under certain conditions it may be concluded,  by comparing eqs.  A-10 

andA-ll,   that holography is successful here,  i.e.   that U   (w) = U(x).    That 

is,   the excitation just behind the hologram (and hence at all distances below 

it) is the same as that caused by a virtual image of the sample,  magnified 

m times,  placed a distance Z     above the hologram.    These conditions are 

that r  = 2 {deviations from 2 are unimportant,  however),   the exponential 

factors before the braces in eqs.  A-10 andA-ll   are equal in magnitude (see 

below),  and that the last term in the braces is ignored.    This last term rep- 

resents a real  image of the sample,  magnified m times,  at a distance Z 

below the hologram.    Either the real or virtual reconstructed images may 

be examined by the viewer,  but the radiation from the other conjugate image 

will be experienced as background noise. 

The magnitude of the exponential factor before the braces in eq.  A-ll 

will be correct if,  in the reproduction process,   the distance from light source 

to hologram is scaled according to the light/electron wavelength ratio: 

(A-12) SL + ZL = —(S +Z)     . 
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Fig.  A-2.    Illustrating holographic reconstruction. 
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Here the subscript L. denotes values used in reconstruction (light);   no sub- 

script means values used in the production of the hologram   (electrons). 

The distance Z     may be found by considering the production of a holo- 
j_i —■———^——— 

gram using light of wavelength \     (wavenumber k   ) illuminating a sample of 

coordinate   w  with distances S     and Z    ; these symbols are substituted into 

eq.  A-10 and w replaces x while §     replaces §.    The resulting U(w) must be 

the same as U   (w) from eq.  A-l 1.    For this to be true the magnitude of the 

exponentials before the integrals must be the same,   or 

kT w .2 
Li kw 

2ZT „    2^ 
L,        2m   Z 

(A-13) Z 

or 

It is also necessary that §     = m§,   so that the image formed by the hologram 

reconstruction is magnified m times the sample size (under the assumption of 

plane waves for illumination and reconstruction). 
3 

Typical values are m =  10   ,  X   = 0. 04 A,  \      = 4, 000 A,  S = 20 cm,   Z = 1 cm. 
5 L 

From  eq.  A-12,  S     +Z     =2.1x  10    cm,  i.e.,  in the reconstruction process 

parallel laser light may be used.    The defocus distance Z     is  10 cm. 
i—i 

The holographic reconstruction apparatus is shown in Fig.   A-2   rotated 

to a horizontal position.    The light to the right side of the hologram  H appears 

to come both from the virtual image at Z     to the left of H and the real image 

Z     to the right of H.    The various methods for rendering phase objects visible 

may now be used.    For example,  a lens may be focussed on the real object 

while either a Foucault stop or Zernike quarter wave plate is placed in its back 

focal plane.    This would give visible contrast at the image plane of the lens, 

where a photographic plate may be placed. 
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The unwanted virtual object gives an undesired background at this image 

plane.    Now,   when light is used both for the hologram recording and recon- 

struction,  in contrast with the Gabor in-line method described here,   reference 
15 

radiation coincident with the object radiation is not usually used. Instead, 

it is customary to use reference radiation impinging on the hologram at an 

angle from the radiation coming from the sample,  which causes a spatial 

separation of the real and ghost images at reconstruction.    This technique 

is impractical for electron microscopy,  however.    On the other hand,  a sug- 

gestion by Bragg and Rogers       may be useful.    Since the lens in Fig.  A-2   is 

focussed on the real image at Z     to the right of H,   the photographic plate 
La 

records the real image and a hologram of the virtual image made at a defocus 

distance 2Z    .    Suppose a hologram is made in the microscope at a defocus 

distance 2Z,  and is printed as a negative.    If this hologram is placed at the 

object plane of the lens,   which coincides with the real image,   the radiation 

from the virtual image will be cancelled out.    More practically a photographic 

plate could first be exposed with the apparatus of Fig.   A-2 without the nega- 

tive hologram,   but with the hologram H.     Then another plate could be exposed 

without H but with the negative hologram made at 2Z.     The two plates could 

then be superimposed and a positive print made; this print would contain the 

real image only. 
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A-IV, KIRCHHOFF DIFFRACTION INTEGRAL FOR RIPPLE 

The result of the substitution of eq.  24 into eq.   8 is to be evaluated 
iA0 

explicitly.    To do this assume that 6 is small so that the factor e        may be 

approximated as  1  + iA0.    The result is I(x) = | U(x)|    ,   where U(x) is given 

by eq.  A- 8.      The first term in eq.  A-8    is given by eq.  A-9;    to evaluate 

the second term it is necessary only to note,  upon substitution of eq.  24, 

that it contains  integrals of the form of the first term but with x  replaced 
7 ß 

by x + . Then,  assuming that S » Z, 

o 
1 + 

4TT M  e t 
o 

co e 
-f exp [-i(ßx + 

Zß 
2k ■)] dß 

The absolute value is found to first order,   giving with the use of the fact 

that eß = e * 

18* M et     „» 6 2 
(A-14) J(x)-1-  j^_    j    f sin (-II-) e "lPx dß 

_00 

This result may be compared with that obtained from the geometric 

theory.    Substituting eq.  23 into eq.  22 gives,  for small 6,  upon substitution 

into eq.   3 

J(x) = 
1 

1  + iZv 
o J 

_oo 

ße   e'lß^ dß 
p 
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Expanding and using eq.   13 

i4Tr MetZ      °° .ft, 

— 00 

From an examination of eq A-14 it is seen that as the ripple wavelength becomes 

much larger than the electron wavelength (\ « p) the geometric expression 

eq.   A-15 is approached.    Further,  it is seen that wave optical effects can 

sause   values   of  I(x) significantly different from those predicted from 

geometric optics. 

To find 6    as a function of ß from the experimental intensity distribution 
P 

I(x),   the inverse Fourier transform of eq.  A-14 is taken,   yielding 

00 

Re(6  )=  § —     |     Y(x) sine(x) dx 

2,rsin<—) 

and 

CO 

Im(eB)=  — =- |     Y(x) cosg(x)dx 

2lr sm(—) 

where 

Y lX;        8irMet o 

which give the real and imaginary parts of 0   ,   respectively.    Once the ex- 
P 

perimental intensity traces have been Fourier analyzed,   the values of 6 
P 

as a function of 9 obtained with the aid of the above equations may be compared 
24 2 

with theory     ,   which predicts  |6D|    as a function of (3. 
P 
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A-V.    ABBE THEORY OF IMAGE FORMATION10 BY A LENS 

The Abbe theory states that the wave function at the back focal plane of a 

lens is the Fourier transform of the wave function at the object,  while the wave 

function at the image plane is the Fourier transform of the wave function at the 

back focal plane. 

The wave function at the back focal plane of a lens focussed on an object 

(Fig.  A-3),  is given by eq.  A-3a with the general object function R(§) replacing 
iA0 

e       .    This excitation is equivalent to that for no lens as Z "• °°; so the second 

term in 0(§) vanishes (also assuming S >> Z). 

The first term in H(?) may be alternatively written as k? tan 6,  where 

0 = tan      —is the angle of the ray emerging from the object (Fig.  A-l). 
z 

With a lens interposed between the object and the image plane,  all rays 

leaving the object at the angle 6 will be focussed at the same point x  in the 

focal plane where  x - f tan 9  (Fig.   A-3).    Then x/Z in eq.  A-3a should be 

replaced by x/f for this configuration.    The excitation in the focal plane is 

then given by 

(A-16) V(x) sCjJ R(5) e'ikx?/f d? 

which represents Fraunhofer diffraction. 

The excitation at the image plane may be found by applying eq.  A-3 

again,   considering Fraunhofer diffraction from the focal plane to the image 

plane.    The sign of the exponent is now changed,  while in compensation, 

positive and negative senses of the x    axis are reversed from those of the 

x axis.    (This procedure calls attention to the image inversion property of 

the lens).    Then 
. kx x 

oo !__— 

(A-17) W(x') = C     * G(x) V(x) e dx     . 
— 00 

Here G(x) is a "filter function" which describes the action of a physical 
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filter or stop placed at the focal plane,  and C    and C    are constants. 

Substituting eq.  A-16 into A-17 and reversing the order of integration, 

(A-18) W(x/) = CiC2J G(x)R(§)ef dx d?     . 
_00      _00 

By geometric lens theory,  D/f = m,   the magnification.    If G(x) = 1,   the first 

integration yields,  using the integral representation of the Dirac Ö function 

W(x') = 2TT  C_C_       R(?) 6(§_ii-)d? 
1    2j_oo m 

or 

W(K') = 2TT   C   C    R(-^-)     . 
12 m 

This equation says that the excitation in the object plane at point  §   is pro- 

portional to that in the image plane at point x1  = m§;   thus the Abbe theory 

is proved since this is the prediction of single lens theory. 
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A-VI.     ZERNIKE PHASE CONTRAST MICROSCOPY10 

This mode is based on the Abbe theory of image formation (Appendix 

A-V).    Eq.  A-16 may be rewritten as 

00 _ ^ 00 _^____ 

(A-19) V(x) = C   J    e      f      d? +C    J  [R(5) -  1] e       f      d§     . 
1  _oo _oo 

Here the first term gives the amplitude in the back focal plane in the absence 

of an object,   while the second term is the contribution from the presence of 

an object.    Now in the absence of an object,   the radiation is concentrated at 

the focal point (the intersection of the optic axis with the back focal plane) 

since an image of the electron source is produced there.    This permits the 

insertion of a filter plate into the back focal plane with a transmission 

G(x) = e ,  at source image (first integral of A-19) 

(A-20) =  1      ,   elsewhere  (second integral of A -19) 

Substitution of eqs.    A-19 and A-20 into A- 17 gives 

(A-21) W(x') = CC   re
iir/Z +R(—) -  l1, 

1    2 L m J 

as seen from eq.   A-18et seq.    If the object is a phase object- so that R(?) = 

e1     *     ,   and if A0 is small so that R(?) *■ 1  + iA0(§),   then from eq.   A-21,   at 

the image plane 

(A-22) I(x') = C |e1Tr/2+ iA0 (— )|2- C[ 1  +2A0(—)] 
m m 

where § = —  and C is a constant. 
m 

62 



Thus,   if the objective lens is focussed on a weak phase object,   with the 

insertion of a quarter wave plate at the focal point,   I(x) becomes proportional 

to the phase A0(—). 
m 

63 



REFERENCES 

1. H.   W.   Fuller and M.   E.   Hale,   J.  AppL Phys.   3JL_, 238 (I960). 

2. H.   W.   Fuller and M.   E.   Hale,   J.  Appl.   Phys.   3^1, 1699 (I960). 

3. H.   Boersch,  H.   Raith and D.  Wohlleben,  Z.  f.   Physik ^5^388 (I960). 

4. H.   Boersch,  H.   Harnisch,   K.   Grohmann,  and D.  Wohlleben,     Z.   f.   Physik 
167, 72 (1962). 

5. H.   Boersch,   H.   Harnisch,   D.   Wohlleben and K.   Grohmann,   Z.  f.   Physik 
164t55 (1961). 

6. D. Wohlleben,   Physics Letters 22_, 564   (1966). 

7. D. Wohlleben,   J.  Appl.   Phys.     (to be published). 

8. L. Marton,   J.  Appl.   Phys.   19,   687  (1948). 

9. Y. Aharonov and D.   Böhm,   Phys.  Rev.   115,485 (1959). 

10. M.   Born and E.   Wolf "Principles of Optics"    (Pergamon Press,  New York, 
1959). 

11. H.   Jeffries and B.   S.   Jeffries,   "Methods of Mathematical Physics" 
(Cambridge University Press,   1956),  p.   506. 

12. H.   Nassenstein,   Z.   angew.   Physik 22_» 37  (1966). 

13. D.   Gabor,   Proc.   Roy Soc.   A197, 454 (1949). 

14. D.   Gabor,   Proc.   Physical Soc.   64,449 (1951). 

15. J.   A.   Armstrong,  IBM J.   Research &   Develop.     9_, 171  (1965. 

16. W.   L.   Bragg and G.   L.   Rogers,   Nature,  j_67_,   190(1951). 

17. D.   Gabor,   G.   W.   Stroke,   D.   Brumm,  A.   Funkhouser,  and A.   Labeyrie, 
Nature 2 08, 1159 (1965). 

18. D.   B.   Dove and P.   N.   Denbigh,  Rev.   Sei.   Instr. 37,1687 (1966). 

64 



19. H.-D.  Dietze and H.  Thomas,  Z.  f.   Physik ^63, 523 (1961). 

20. E.  Feldtkeller,   Z.  angew.   Physik j_5, 206 (1963). 

21. A.  Aharoni,  J.  Appl.   Phys.   37,3271  (1966). 

22. J.   T.   Winthrop and C.  R.  Worthington,  J.  Optical Soc. Amer.   56, 
588 (1966). 

23. D.  Gabor and W.   P.   Goss,   J.   Optical Soc.  Amer.   56,   849 (1966). 

24. K.   J.   Harte,   "Spin Wave Effects in the Magnetization Reversal of a 
Thin Ferromagnetic Film," M. I. T.   Lincoln Laboratory Technical 
Report 364 (August 1964). 

25. G.  A.   BassettandA.   Keller,   PhiL Mag. 9,  817 (1964). 

26. K.  Schaffernicht; Z.  angew. Physik 1J_,  275 (1963). 

27. R.   H.   Wade,   Phys.   stat.   sol.   1%   847 (1967). 

28. M.   J.  Goringe and J.   P.   Jakubovics,   Phil.   Mag. JU5_,  393 (1967). 

29. E.   Jahnke and F.  Emde,     Tables of Functions       (Dover,  New York,   1945). 

30. J.  Faget,   J.  Ferre,  and C.  Fert,  Comptes Rendus Acad.   Sei.     251, 
526 (1960). 

31. J.  Faget, Revue d'Optique 40_,  347 (1961). 

32. M.  H.  Horman,  Applied Optics 4,   333 (1965). 

33. L.  H.   Tanner,   J.  Sei.  Instr.  43_,   878 (1966). 

34. L.O.  Heflinger,  R.   F.   Wuerker,  and R.  E.   Brooks,   J.   Appl.   Phys. 
37,  642 (1966). 

35. R.   D.  Heidenreich,     Fundamentals of Transmission Electron Micros- 
copy    (Interscience Publishers,  New York,   1964). 

36. R.   Speidel,  Optik 23,   125 (1965). 

37. R..   Buhl,  Z.  angew.   Physik 13,  232 (1961). 

65 



UNCLASSIFIED 

Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 

1.    ORIGINATING   ACTIVITY   (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.    REPORT   SECURITY    CLASSIFICATION 

Unclassified 
2b.    GROUP 

None 
3.    REPORT   TITLE 

Wave Optical Aspects of Lorentz Microscopy 

4.    DESCRIPTIVE   NOTES  (Type of report and inclusive dates) 

Technical Note 
S.    AUTHOR(S)  (Last name, first name, initial) 

Cohen, Mitchell S. 

6.    REPORT   DATE 

10 May 1967 

7a.    TOTAL   NO. OF   PAGES 

72 

7b. NO. OF REFS 

37 

8«.  CONTRACT OR GRANT NO. 

AF 19(628)-5167 
b.    PROJECT   NO. 

649L 

d. 

9a.    ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Note 1967-21 

9b.    OTHER   REPORT   NO(S)   (Any other numbers that may be 
assigned this report) 

ESD-TR-67-264 

10.     AVAILABILITY/LIMITATION   NOTICES 

Distribution of this document is unlimited. 

II.     SUPPLEMENTARY    NOTES 

None 

12.    SPONSORING   MILITARY    ACTIVITY 

Air Force Systems Command, USAF 

13.    ABSTRACT 

The customary defocussed and Foucault modes of Lorentz microscopy are usually described in terms of geo- 
metric optics.    Wohlleben has shown that geometric optics has a restricted range of validity, however; a more 
fundamental approach is provided by wave optics.   The defocussed and Foucault modes may be discussed in terms 
of wave optics, and for the defocussed mode it can be shown explicitly that the geometric theory is simply the first 
approximation to the wave optics theory.    Consideration of wave optics also leads to the proposal of two additional 
modes of Lorentz microscopy:   Zernike phase contrast and interference microscopy; these modes cannot be de- 
scribed on the basis of geometric optics.    The most fundamental problems in magnetic films which are amenable 
to study by Lorentz microscopy are investigations of the fine structures of domain walls and magnetization ripple. 
These problems are discussed in terms of wave optics for all four modes of Lorentz microscopy; in particular, 
the intensity distribution of the zero-width divergent domain wall is explicitly calculated for each mode.    For prac- 
tical experiments the importance of coherence, i.e., of the illumination source size, is emphasized, and the ex- 
perimental aid of holography is suggested.    Since the Wohlleben limit is valid for all four modes, however, there 
is no resolution advantage inherent in any one mode.    The choice of modes for solution of the domain wall and rip- 
ple problems therefore depends upon experimental convenience.    It is concluded that the defocussed mode seems 
most promising for practical application; Fresnel diffraction is preferred for the domain wall problem, while 
Fraunhofer diffraction using low angle electron diffraction techniques will be fruitful for the ripple problem. 

14.    KEY   WORDS 

microscopy 
Lorentz microscopy 

geometric optics 
wave optics 

ferromagnetic films 

66 UNCLASSIFIED 

Security Classification 



Printed by 
United States Air Force 
L. G. Hanscom Field 
Bedford,  Massachusetts 




